

INDIAN SCHOOL AL WADI AL KABIR

Assessment - I (2023-24)

SUB: Applied Mathematics (241)

Date: 26/09/2023 Set I Time Allowed: 3 hours

Grade: XII Maximum Marks: 80

General Instructions:

1. This question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

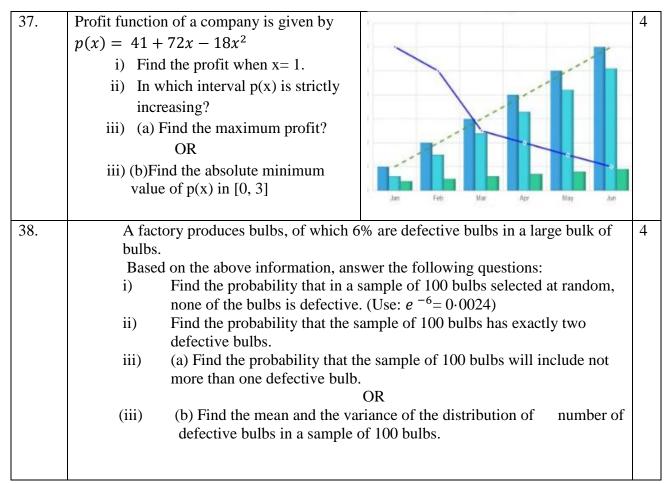
2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.


Q. No		suo parts.			SECTIO	ON A ((MCQ)				Marks	S
1.	If a matrix has 16 elements, then which of the following cannot be its order?											1
	A	2 × 8	В	4 × 4	1	C	1 × 1	16	D	15 × 1		
2.	$\begin{vmatrix} 2x \\ -3 \end{vmatrix}$	$\begin{vmatrix} 4 \\ x \end{vmatrix} = \begin{vmatrix} 5 \\ -1 \end{vmatrix}$	0	then vo	alue of	<i>x</i> .		I				1
	A	<u>±</u> 3		B ±	$2\sqrt{6}$	C	<u>±</u> 5		D	±2√7		
3.	$If A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 3 \\ -1 & 0 & 3 \end{pmatrix}, adjA = \underline{\qquad}$											1
	A	3	В	9		С	27		D	81		
4.	$\frac{Writ}{\left(\frac{dy}{dx}\right)^{\frac{1}{2}}}$	$\frac{1}{2} = \left(\frac{d^2y}{dx^2}\right)$	$\frac{1}{3}$	order at	nd degr	ree of	differr	itial eq	juation		1	1
	A	5		В	4		С	3	D	Not define	d	

5.	If A =	[3 2	⁵ ₄] t	hen	A ⁻¹										1
	A	[⁴ ₂	53	В	$\begin{bmatrix} -2 \\ 1 \end{bmatrix}$	² ₋₃]	С		$\begin{bmatrix} 2 & -1 & \frac{3}{2} \\ -1 & \frac{3}{2} \end{bmatrix}$	$\left[\frac{5}{2}\right]_{\frac{3}{2}}$	Г	•	[2	$\begin{bmatrix} \frac{5}{2} \\ \frac{3}{2} \end{bmatrix}$	
6.					ariance o succes			nial d	istribution	n are 4	and 2				1
	A		$\frac{1}{2}$		В		$\frac{7}{64}$	<u>.</u>	C	$\frac{21}{25}$	9 6	D		$\frac{37}{56}$	
7.	The va	alue o	of x it	f A is	s a sing	ular	mat	rix, v	vhere A =	$= \begin{pmatrix} 1 \\ 0 \\ x \end{pmatrix}$	0 1 3	$\begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}$			1
	A	3	3	В	2			C	1		D			0	
8.	If x is a Poisson variable and $P(x = 1) = 2p(x = 2)$, then $P(x = 0) = $										1				
	A	e ⁻	-1	В	e			C	1		D			e^2	
9.	If $x =$	logt	and	l y =	$=\frac{1}{t}$ then	$\frac{dy}{dx} =$									1
	A			1			_	$-\frac{1}{t}$	С	_	-t	D		e^t	
10.					normal t 20 is e				2 and stan	dard d	leviati	on is	4. Th	ien	1
	A	1	-	В	2			C	3		D			4	
11.	Which	n of th	ne fol	llowi	ng is the	solu	tion	of xd	y = ydx	?		•			1
	A	x - y	y = a		$\mathbf{B} \mid xy =$	= <i>c</i>		C	$\frac{y}{x} = a$	C	D	Ĵ	x + y	r = c	
12.	The di $y^2 =$			-	tion of f	amily	of p	parabo	olas whose	e equa	tion is				1
	$ \mathbf{A} x$	$\frac{dy}{dx} =$: 2 <i>y</i>		$\mathbf{B} \qquad \frac{a}{a}$	$\frac{dy}{dx} = \frac{1}{2}$	y	C	$y\frac{dy}{dx} =$	= 2 <i>x</i>	D	<i>x</i>	$\frac{dy}{dx}$	$=2y^2$	
13.	In wh	ich of	the	follo	wing int	erval	<i>y</i> =	x^3 –	3x is str	ictly (decre	asing	_ _ _		1
	A	(–∞,	-1)		B (-1	, 1)		C	(1, ∘	o)	D		(-	1,∞)	

14.	$\int_{-1}^{1} lo$	$g\left(\frac{2+x}{2-x}\right)d$	x =	·								1
	A	0	В		1	(С	2		D	3	
15.	A stone is dropped into a quiet lake and waves move in circles at a speed of 4cm per second. At the instant, when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing?											1
	A	80π	В	2	400π		С	100π	D		40π	
16.	f(x)	$= x^x has$	a sto	atio	nary poin	ıt ai	ţ		l		1	1
	A	x= e		В	x=1	(C	$x = \frac{1}{e}$	D		x = 0	
17.	$\int 3^{3^x} 3^x dx = \underline{\qquad}.$											1
	A	$\frac{3^{3^{x}}}{(log3)^{2}} + C$		В	$3^{3^x} + C$,	C	$3^{3^x}log3$	3 + c	D	$3^{3^x}3^x + C$	
18.	$\int_0^1 e^x$	$\left(\frac{x}{(x+1)}\right)$	$\frac{1}{2}$ dx	c						•		1
	A	e^2	В	3	$\frac{e}{2}$	С		1	I		$\frac{e-2}{2}$	
	ASSERTION-REASON BASED QUESTIONS In the following questions (19 and 20), a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. A) Both A and R are true and R is the correct explanation of A. B) Both A and R are true but R is not the correct explanation of A. C) A is true but R is false. D) A is false but R is true.									•		
19.								x = 2 and al if $ A = A $				1
	(K) 1	A A	liiat		3 A and B		-qu	C C	۱۳۱۰		D	

20.	$(A) f(x) = e^{2x}$	is increasing	g in R, where	e R is the set	of real numbers	S.					
	(R) f(x) is incre	asing if $f'(x)$	$\geq 0, x \in R,$	where R is th	ne set of real nu	ımbers.	1				
	A	В		С	Ι)					
			SECTIO	ON B							
21.	The probability	distribution of	f X is given h)V			2				
	$\begin{array}{ c c c }\hline X \\ \hline P(X) \\ \hline Find the value of \\ \hline \end{array}$	0 0.1	1 k	2 2k	3 2k	4 k					
22.	Find the equation	n of tangent to	-	$x^3 + 3x + 1$ OR	at (1, 5)		2				
	The cost function Prove that marg	n C(x) of a co	mmodity is g	given by $c(x)$ utput x increase	$0 = \frac{2x^2 + 3x}{x + 2}.$ ases.						
23.	Evaluate: $\int_3^9 \frac{1}{\sqrt{x}}$	$\frac{\sqrt{x}}{+\sqrt{12-x}}dx$	C)R			2				
	The marginal re where x is the n if at $x=2$, $R(x) =$	umber of units		-		function R(x)					
24.	Express $A = \begin{pmatrix} 3 & 4 & 0 \\ -1 & 2 & 3 \\ 1 & 2 & -1 \end{pmatrix}$ as a sum of symmetric and a skew symmetric matrix.										
25.	If $A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} -3 \\ 3 \end{bmatrix}$, and B	$= \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$ then find	the product A	В	2				
			SECT	ION C							
26.	SECTION C A fair coin is tossed 9 times. Find the probability of getting i) exactly 5tails; ii) at least 5tails; iii) at most 5 tails.										
27.	Find the matr	ix X, if X.	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} =$	$\begin{bmatrix} -7 & -8 \\ 2 & 4 \end{bmatrix}$	-9 ₆]		3				
28.	Solve the follow $3x + 4y = 24$		-	er's rule:			3				

Find the consumers' surplus for the demand function	3
•	
OR	
Find the producers' surplus for the demand function	
$p = 4 - 5x + x^2 \text{ when } p_0 = 18.$	
Evaluate: $\int_{-1}^{1} \frac{x^3 + x + 1}{x^2 + 2 x + 1} dx$ OR Evaluate: $\int_{0}^{3} x - 1 + x - 2 dx$	3
Find the particular solution of the differential equation $xy\frac{dy}{dx} = (x+2)(y+2)when x = 1 and y = -1$	3
SECTION D	
In a district, exam scores of 500 student of class XII are recorded at the end of the session.	5
 a) Tom scored 640 marks in total out of 800. The average score for the batch was 520 and the standard deviation was calculated to be 80. Find out how has Tom scored compared to his batch mates in the whole district. b) Jerry scored 400 marks in the same batch. What can you say about her performance as compared to the batch of 500 students? c) How much has Hari scored if he has done better than 45.22% of his batchmates? 	
(Given: $P(z < 1.5) = 0.9332$, $P(z < -0.12) = 0.4522$)	
If $x^m y^n = (x + y)^{m+n}$ then prove that $\frac{dy}{dx} = \frac{y}{x}$ and $\frac{d^2y}{dx^2} = 0$	5
$C(x) = \frac{x^3}{3} - 7x^2 + 111x + 50 \text{ and } x = 100 - p$ (i) Find the total revenue function in terms of x. (ii) Find the total profit function P in terms of x. (iii) Find the profit maximum level of output of x.	
	1_
	5
Evaluate: $\int \frac{2x-3}{x^3-x^2-x+1} dx \text{OR} \int \frac{x^2}{x^2-2x-3} dx$	
SECTION-E	
Ms. Rajni deposited Rs.10,000 in a bank that pays 4% interest compounded continuously. Based on the above information i) formulate a differential equation and find its particular solution. ii) How much amount will she get after 10 years?	4
	Find the producers' surplus for the demand function $p=4-5x+x^2$ when $p_0=18$. Evaluate: $\int_{-1}^1 \frac{x^3+ x +1}{x^2+2 x +1} dx$ OR Evaluate: $\int_0^3 x-1 + x-2 dx$ Find the particular solution of the differential equation $xy\frac{dy}{dx}=(x+2)(y+2)$ when $x=1$ and $y=-1$ SECTION D In a district, exam scores of 500 student of class XII are recorded at the end of the session. a) Tom scored 640 marks in total out of 800. The average score for the batch was 520 and the standard deviation was calculated to be 80. Find out how has Tom scored compared to his batch mates in the whole district. b) Jerry scored 400 marks in the same batch. What can you say about her performance as compared to the batch of 500 students? c) How much has Hari scored if he has done better than 45.22% of his batchmates? (Given: $P(z<1.5)=0.9332$, $P(z<-0.12)=0.4522$) If $x^my^n=(x+y)^{m+n}$ then prove that $\frac{dy}{dx}=\frac{y}{x}$ and $\frac{d^2y}{dx^2}=0$ OR A firm has the following total cost and demand functions: $C(x)=\frac{x^3}{3}-7x^2+111x+50$ and $x=100-p$ (i) Find the total profit function P in terms of x . (ii) Find the profit maximum level of output of x . What is the maximum profit, taking rupee as a unit of money? Solve the following equations using matrices: $x+y+z=35$, $2x-y+z=35$, $x-z=15$ Evaluate: $\int \frac{2x-3}{x^3-x^2-x+1} dx$ OR $\int \frac{x^2}{x^2-2x-3} dx$ SECTION-E Ms. Rajni deposited Rs.10,000 in a bank that pays 4% interest compounded continuously. Based on the above information i) formulate a differential equation and find its particular solution.
